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CHAPTER 111 
PREDICTION AND MODELING OF FLOOD HYDROLOGY AND HYDRAULICS 

JORGE A. RAMÍREZ 
Water Resources, Hydrologic and Environmental Sciences 
Civil Engineering Department 
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Fort Collins, Colorado 80523-1372, USA 

ABSTRACT.  The basic principles underlying the most commonly used physically-based 
models of the rainfall-runoff transformation process are reviewed. A thorough knowledge 
of these principles is a pre-requisite for flood hazard studies and, thus, this chapter 
reviews several physically-based methods to determine flood discharges, flow depths, and 
other flood characteristics.  The chapter starts with a thorough review of linear system 
theory applied to the solution of hydrologic flood routing problems in a spatially 
aggregated manner -- Unit Hydrograph approaches. The chapter then proceeds to a review 
of distributed flood routing approaches, in particular the kinematic wave and dynamic 
wave approaches. The chapter concludes with a brief discussion about distributed 
watershed models, including single event models in which flow characteristics are 
estimated only during the flood, and continuous event models in which flow 
characteristics are determined continuously during wet periods and dry periods. 

INTRODUCTION 

 Flood prediction and modeling refer to the processes of transformation of rainfall 
into a flood hydrograph and to the translation of that hydrograph throughout a watershed 
or any other hydrologic system. Flood prediction and modeling generally involve 
approximate descriptions of the rainfall-runoff transformation processes. These 
descriptions are based on either empirical, or physically-based, or combined conceptual-
physically-based descriptions of the physical processes involved. Although, in general, 
the conceptualizations may neglect or simplify some of the underlying hydrologic 
transport processes, the resulting models are quite useful in practice because they are 
simple and provide adequate estimates of flood hydrographs. 

 In modeling single floods, the effects of evapotranspiration, as well as the 
interaction between the aquifer and the streams, are ignored. Evapotranspiration may be 
ignored because its magnitude during the time period in which the flood develops is 
negligible when compared to other fluxes such as infiltration. Likewise, the effect of the 
stream-aquifer interaction is generally ignored because the response time of the 
subsurface soil system is much longer than the response time of the surface or direct 
runoff process. In addition, effects of other hydrologic processes such as interception and 
depression storage are also neglected. Event-based modeling generally involves the 
following aspects: 
                                                 
1Ramírez, J. A., 2000: Prediction and Modeling of Flood Hydrology and Hydraulics. Chapter 11 of Inland Flood Hazards: Human, 

Riparian and Aquatic Communities Eds. Ellen Wohl; Cambridge University Press. 
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a) evaluation of the rainfall flux over the watershed I(x, t) as a function of space and 
time; 

b) evaluation of the rainfall excess or effective rainfall flux as a function of space and 
time, Ie(x, t). Effective rainfall is the rainfall available for runoff after infiltration and 
other abstractions have been accounted for; and 

c) routing of the rainfall excess to the watershed outlet in order to determine the 
corresponding flood hydrograph, Q(t). 

Hydrologic flood prediction models may be categorized into physical models and 
mathematical models. Mathematical models describe the system behavior in terms of 
mathematical equations representing the relationships between system state, input and 
output. Mathematical models can, in turn, be categorized as either purely conceptual 
models or physically-based models. Depending on whether the functions relating input, 
output and system state are functions of space and time, these models may be further 
categorized as lumped models or distributed models. Lumped models do not account 
explicitly for the spatial variability of hydrologic processes, whereas distributed models 
do. Lumped models use averages to represent spatially distributed function and 
properties. 

UNIT HYDROGRAPH ANALYSIS 

 Sherman (1932) first proposed the unit hydrograph concept. The Unit Hydrograph 
(UH) of a watershed is defined as the direct runoff hydrograph resulting from a unit 
volume of excess rainfall of constant intensity and uniformly distributed over the drainage 
area. The duration of the unit volume of excess or effective rainfall, sometimes referred to 
as the effective duration, defines and labels the particular unit hydrograph. The unit 
volume is usually considered to be associated with 1 cm (1 inch) of effective rainfall 
distributed uniformly over the basin area. 

 The fundamental assumptions implicit in the use of unit hydrographs for modeling 
hydrologic systems are: 

a) Watersheds respond as linear systems. On the one hand, this implies that the 
proportionality principle applies so that effective rainfall intensities (volumes) of different 
magnitude produce watershed responses that are scaled accordingly. On the other hand, it 
implies that the superposition principle applies so that responses of several different 
storms can be superimposed to obtain the composite response of the catchment. 

b) The effective rainfall intensity is uniformly distributed over the entire river basin. 

c) The rainfall excess is of constant intensity throughout the rainfall duration. 

d) The duration of the direct runoff hydrograph, that is, its time base, is independent of 
the effective rainfall intensity and depends only on the effective rainfall duration. 
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 When the effective rainfall is given as a hyetograph, that is, as a sequence of M 
rainfall pulses of the same duration ∆t, the corresponding direct runoff hydrograph can be 
expressed as the discrete convolution of the rainfall hyetograph and the Unit Hydrograph 
as, 

 Qn = PmUn −m + 1
m=1

m*

∑ , m* = min(n, M)  (1a) 

   Qn = Q(n∆t ), n = 1,L, N  (1b) 

 Pm = Ie(τ )dτ ,
(m −1)∆t

m ∆t

∫ m = 1,L, M  (1c) 

where Pm is the volume of the mth effective rainfall pulse, Qn is the direct runoff, and Un-

m+1 are the Unit Hydrograph ordinates. 

 Although the above assumptions lead to acceptable results, watersheds are indeed 
nonlinear systems. For example, unit hydrographs derived from different rainfall-runoff 
events, under the assumption of linearity, are usually different, thereby invalidating the 
linearity assumption. 

 The determination of unit hydrographs for particular basins can be carried out 
either using the theoretical developments of linear system theory; or using empirical 
techniques. For either case, simultaneous observations of both precipitation and 
streamflow must be available. These two approaches are presented in more detail in later 
sections. 

Hydrograph Components 

 Total streamflow during a precipitation event includes the baseflow existing in the 
basin prior to the storm and the runoff due to the given storm precipitation. Total 
streamflow hydrographs are usually conceptualized as being composed of: 

a) Direct Runoff, which is composed of contributions from surface runoff and quick 
interflow. Unit hydrograph analysis refers only to direct runoff. 

b) Baseflow, which is composed of contributions from delayed interflow and 
groundwater runoff. 

 Surface runoff includes all overland flow as well as all precipitation falling 
directly onto stream channels. Surface runoff is the main contributor to the peak 
discharge. 

 Interflow is the portion of the streamflow contributed by infiltrated water that 
moves laterally in the subsurface until it reaches a channel. Interflow is a slower process 
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than surface runoff. Components of interflow are quick interflow, which contributes to 
direct runoff, and delayed interflow, which contributes to baseflow (e.g., Chow, 1964.) 

 Groundwater runoff is the flow component contributed to the channel by 
groundwater. This process is extremely slow as compared to surface runoff. 

 Schematically in Figure 11.1, the streamflow hydrograph is subdivided into a) 
Rising Limb: rising portion of the hydrograph, composed mostly of surface runoff. b) 
Crest: zone of the hydrograph around peak discharge. c) Falling (or Recession) Limb: 
Portion of the hydrograph after the peak discharge, composed mostly of water released 
from storage in the basin. The lower part of this recession corresponds to groundwater 
flow contributions. 

 The main factors affecting hydrograph shape are: 

1) Drainage characteristics: basin area, basin shape, basin slope, soil type and land use, 
drainage density, and drainage network topology. Most changes in land use tend to 
increase the amount of runoff for a given storm (e.g., Chow et al., 1988; Singh, 1989; 
Bras, .1990). 

2) Rainfall characteristics: rainfall intensity, duration, and their spatial and temporal 
distribution; and storm motion, as storms moving in the general downstream direction 
tend to produce larger peak flows than storms moving upstream (e.g., Chow et al., 
1988; Singh, 1989; Bras, .1990). 

 Hydrographs are also described in terms of the following time characteristics (see 
Figure 11.1): 

Time to Peak, tp: Time from the beginning of the rising limb to the occurrence of the peak 
discharge. 

 The time to peak is largely determined by drainage characteristics such as 
drainage density, slope, channel roughness, and soil infiltration characteristics. Rainfall 
distribution in space also affects the time to peak. 

Time of Concentration, tc: Time required for water to travel from the most hydraulically 
remote point in the basin to the basin outlet. For rainfall events of very long duration, the 
time of concentration is associated with the time required for the system to achieve the 
maximum or equilibrium discharge. Kibler (1982) and Chow et al. (1988) summarize 
several of many empirical and physically-based equations for tc that have been developed. 

 The drainage characteristics of length and slope, together with the hydraulic 
characteristics of the flow paths, determine the time of concentration. 

Lag Time, tl: Time between the center of mass of the effective rainfall hyetograph and the 
center of mass of the direct runoff hydrograph. 
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 The basin lag is an important concept in linear modeling of basin response. The 
lag time is a parameter that appears often in theoretical and conceptual models of basin 
behavior. However, it is sometimes difficult to measure in real world situations. Many 
empirical equations have been proposed in the literature. The simplest of these equations 
computes the basin lag as a power function of the basin area. 

Time Base, tb: Duration of the direct runoff hydrograph. 

Baseflow separation. 

 As the Unit Hydrograph concept applies only to direct runoff, the direct runoff 
must be separated from the baseflow. Baseflow separation or hydrograph analysis is the 
process of separating the direct runoff (surface runoff and quick interflow) from the 
baseflow. This separation is somewhat arbitrary, but corresponds to theoretical concepts 
of basin response. 

Subjective methods.   Several subjective methods are shown in Figure 11.1. The 
simplest one consists in arbitrarily selecting the discharge marking the beginning of the 
rising limb as the value of the baseflow and assuming that this baseflow discharge 
remains constant throughout the storm duration. A second method consists in arbitrarily 
selecting the beginning of the groundwater recession on the falling limb of the 
hydrograph (usually assumed to occur at a theoretical inflection point) and connecting 
this point by a straight line to the beginning of the rising limb. A third example of 
subjective methods consists in extending the recession prior to the storm by a line from 
the beginning of the rising limb to a point directly beneath the peak discharge and then 
connecting this point to the beginning of the groundwater recession on the falling limb. 

Area method.  The area method of baseflow separation consists in determining the 
beginning of the baseflow on the falling limb with the following empirical equation, 

 2.0bAN =  (2) 

relating the time in days from the peak discharge, N, to the basin area, A. When A is in 
square miles, b equals 1. When A is in square kilometers, b equals 0.8. This equation is 
unsuitable for smaller watersheds and should be checked for a number of hydrographs 
before using. 

The master recession curve method. This method consists in modeling the 
response of the groundwater aquifer as a linear reservoir of parameter k. This assumption 
leads to the following equation for the groundwater recession hydrograph, 

 Q(t) = Q(to )e−( t −t o ) / k  (3) 

where Q(t) is the baseflow at time t; Q(to) is a reference baseflow discharge at time to, and 
k is the recession constant for baseflow. This method is based on a linear reservoir model 
of unforced basin response (that is, response from storage) and it can be used to separate 
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the contributions to the recession flow from surface storage, subsurface storage, and 
groundwater aquifer storage. It involves the determination of several recession constants. 

tl

tp

tb

Effective precipitation
Streamflow hydrograph
Baseflow hydrographs

 

 Figure 11.1: Schematic Description of Hydrograph 

UNIT HYDROGRAPHS: EMPIRICAL DERIVATION 

 The following are essential steps in deriving a unit hydrograph from a single 
storm: 

 1) Separate the baseflow and obtain the direct runoff hydrograph (DRH). 

 2) Compute the total volume of direct runoff and convert this volume into 
equivalent depth of effective rainfall (in centimeters or in inches) over the entire basin. 

 3) Normalize the direct runoff hydrograph by dividing each ordinate by the 
equivalent volume (in or cm) of direct runoff (or effective rainfall). 
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 4) Determine the effective duration of excess rainfall. To do this, obtain the 
effective rainfall hyetograph (e.g., use the φ-index, the Horton, Green and Ampt, or Philip 
equations, or some other method to determine infiltration losses) and its associated 
duration. This duration is the duration associated with the unit hydrograph. 

 Unit hydrographs are fundamentally linked to the duration of the effective rainfall 
event producing them. They can only be used to predict direct runoff from storms of the 
same duration as that associated with the UH, or from storms which can be described as a 
sequence of pulses, each of the same duration as that associated with the UH (see 
Equation 1). 

Unit Hydrographs for Different Effective Duration 

 A unit hydrograph for a particular watershed is developed for a specific duration 
of effective rainfall. When dealing with a rainfall of different duration a new unit 
hydrograph must be derived for the new duration. The linearity property implicit in the 
UH analysis can be used to generate UH’s associated with larger or smaller effective 
rainfall pulse duration. This procedure is sometimes referred to as the S-curve 
Hydrograph method. 

S-Curve Hydrograph Method 

 An S-hydrograph represents the response of the basin to an effective rainfall event 
of infinite duration. Assume that an UH of duration D is known and that an UH for the 
same basin but of duration D’ is desired. The first step is to determine the S-curve 
hydrograph by adding a series of (known) UH’s of duration D, each lagged by a time 
interval D. The resulting superposition represents the runoff resulting from a continuous 
rainfall excess of intensity 1/D. 

 Lagging the S-curve in time by an amount D’ and subtracting its ordinates from 
the original unmodified S-curve yields a hydrograph corresponding to a rainfall event of 
intensity 1/D and of duration D’. Consequently, to convert this hydrograph whose volume 
is D’/D into a unit hydrograph of duration D’, its ordinates must be normalized by 
multiplying them by D/D’. The resulting ordinates represent a unit hydrograph associated 
with an effective rainfall of duration D’. 

UNIT HYDROGRAPHS: LINEAR SYSTEM THEORY 

 A hydrologic system (a basin) is said to be a linear system if the relationship 
between storage, inflow, and outflow is such that it leads to a linear differential equation. 
The hydrologic response of such systems can be expressed in terms of an impulse 
response function (IRF) through a so-called Convolution Equation. Linear systems 
possess the properties of additivity and proportionality, which are implicit in the 
convolution equation. Linear reservoirs, for example, are special cases of a general 
hydrologic system model in which the storage is linearly related to the output by a 
constant k. 

Impulse Response Function 
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 The IRF of a linear system represents the response of the system to an 
instantaneous impulse (excitation) of unit volume applied at the origin in time (t=0). The 
response of continuous linear systems can be expressed, in the time domain, in terms of 
the impulse response function via the convolution integral as follows, 

 Q(t) = Ie (τ )u(t −τ )dτ
0

t

∫  (4) 

where u(t) is the impulse response function of the system. 

In hydrology, it has been customary to assume that watersheds behave as linear 
systems. When dealing with hydrologic systems, u(t) represents the instantaneous unit 
hydrograph (IUH), and Q(t) and Ie(t) represent direct runoff and excess or effective 
precipitation, respectively. Thus, an Instantaneous Unit Hydrograph represents the 
response of a watershed (discharge at its outlet as a function of time) to a unit volume of 
precipitation uniformly distributed over the basin and occurring instantaneously at time t 
= 0. 

Unit Step Response Function 

 The unit step response function (SRF) is the theoretical counterpart to the S-curve 
hydrograph concept presented earlier in the empirical UH analysis section. It represents 
the runoff hydrograph from a continuous effective rainfall of unit intensity. As can be 
seen from its definition, it is the convolution of 1 and u(t), and obtained as, 

 ∫=
t

dttutg
0

)()(  (5) 

Unit Pulse Response Function 

 The unit pulse response function (PRF) is the theoretical counterpart to the UH 
concept presented earlier. It represents the runoff hydrograph from a constant effective 
rainfall of intensity 1/∆t and of duration ∆t. 

 h(t) =
1
∆t

[g(t) − g(t − ∆t)] =
1
∆t

u(τ )dτ
t −∆ t

t

∫  (6) 

From its definition, the PRF can be seen as the normalized difference between two lagged 
SRF’s (S-curve hydrographs), lagged by an amount ∆t. This is analogous to the procedure 
presented earlier in the section on S-hydrograph analysis. 

Discrete Convolution Equation 

 When the effective rainfall is given as a hyetograph, that is, as a sequence of 
rainfall pulses of the same duration ∆t, the corresponding direct runoff hydrograph can be 
expressed as the discrete convolution of the rainfall hyetograph and a Unit Hydrograph, 
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 Qn = PmUn −m + 1
m=1

m*

∑ , m* = min(n, M)  (1a) 

   Qn = Q(n∆t ), n = 1,L, N  (1b) 

 
 

Pm = Ie(τ )dτ ,
(m −1)∆t

m ∆t

∫ m = 1,L, M  (1c) 

where Pm is the volume of the mth effective rainfall pulse and the Unit Hydrograph 
ordinates are given by, 

 ∫
∆+−

∆−
+− ∆

=∆+−=
tmn

tmn
mn du

t
tmnhU

)1(

)(
1 )(1])1[( ττ  (7) 

The UH ordinates correspond to the area under the IUH between two consecutive time 
intervals. 

 The discrete convolution can be expressed alternatively as a matrix equation as, 

 P[ ] U[ ] = Q[ ]  (8a) 
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 (8b) 

where M is the number of effective rainfall pulses; N-M+1 is the number of UH 
ordinates; and N is the number of direct runoff ordinates. Matrix P is of dimensions (N x 
(N-M+1)). Recasting the discrete convolution equation in this manner allows for an 
objective (and optimal) mathematical derivation of the UH ordinates. The estimation of 
the Unit Hydrograph from simultaneous observations of effective precipitation (Pm) and 
direct runoff (Qn) can be seen as a linear static estimation problem for which a method 
like least-squares, linear programming, or others can be used. 

 The least-squares approach tries to obtain a set of UH ordinates that minimizes the 
sum of squares of the errors, and leads to the following solution for the UH, 

 [U] = [[ P]T [P]]−1 [P]T[Q]  (9) 
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where [[P]T[P]]-1 is the inverse of matrix [[P]T[P]], and the superscript T stands for 
transpose. This approach is adequate when the data (precipitation and discharge) are 
relatively error free or the errors can be expected to be small. When the data can be 
expected to contain large errors a different approach may be more adequate. Such 
approach would minimize the sum of the absolute value of the errors. Linear 
programming would then be the appropriate solution procedure. 

CONCEPTUAL (SYNTHETIC) UNIT HYDROGRAPHS 

 As indicated earlier, sets of concurrent observations of effective rainfall and direct 
runoff are required for the derivation of unit hydrographs. Thus, the resultant UH is 
specific to the particular watershed defined by the point on the stream where the direct 
runoff observations were made. When no direct observations are available, or when UH’s 
for other locations on the stream in the same watershed or for nearby watersheds of 
similar characteristics are required, Synthetic Unit Hydrograph procedures must be used. 

 Synthetic Unit Hydrograph procedures can be categorized as (e.g., Chow et al., 
1988): 1) those based on models of watershed storage (e.g., Nash, 1957, 1958, 1959; 
Dooge, 1959; etc.); 2) those relating hydrograph characteristics (time to peak, peak flow, 
etc.) to watershed characteristics (e.g., Snyder, 1938; Geomorphologic Instantaneous Unit 
Hydrograph); and 3) those based on a dimensionless unit hydrograph (e.g., Soil 
Conservation Service, 1972). 

Conceptual UH’s Based on Models of Watershed Storage 

The Nash and Dooge Models. 

Linear Reservoirs - A linear reservoir is characterized by a linear relationship between the 
storage and the output as, 

 S(t) = kQ(t)  (10) 

The impulse response function of such linear reservoir is, 

 u(t ) =
1
k

e−t / k

 (11) 

 Nash (1957,1958, 1959, 1960) proposed a cascade of n equal linear reservoirs as a 
model on which to base the derivation of IUH’s for natural watersheds. The Nash model 
is one of the most widely used models in applied hydrology. Using the convolution 
equation (eq. 4) and the impulse response function for a single linear reservoir (eq. 11), 
the IUH corresponding to the Nash Model can be easily obtained as follows, 

 
un (t) =

1
kΓ (n)

(
t
k

)n−1 e−t / k

 (12) 
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This equation is a two parameter gamma distribution function, where n is the shape 
parameter, and k is the scale parameter. When rainfall and runoff data are available, the 
shape parameter can be estimated as the inverse of the second non-dimensional moment 
of the IUH about the centroid (i.e., the inverse of the square of the coefficient of 
variation); and the scale parameter can be estimated as the ratio of the first order moment 
of the IUH about the origin to n. A general form for the peak discharge, Qmax, due to a 
finite pulse of rainfall excess with duration tr and uniform intensity Ie was suggested by 
Adom et al. (1989) in the form of a Weibull cumulative distribution function (CDF), i.e. 

 












=









−

β

α
l

r

t
t

eAIQ e-1max  (13) 

where A is the contributing area, and tl is the basin lag-time, which is given by tl = nk. 
The values of a and b, which are parameters depending on n, i.e. the number of reservoirs 
in the cascade, are given in Table 1 (Ramírez, et al., 1994). 

TABLE 1. Parameter values for the peak discharge equation of the linear 
reservoir cascade model 

n 1 2 3 4 

a 1 1.017 1.175 1.348 

b 1 1.220 1.313 1.370 

Linear Channels - A linear channel is characterized by continuity and momentum 
equations given by, 

 
∂Q
∂x

+
∂A
∂t

= 0  (14a) 

 A = C(x)Q  (14b) 

For conditions of no lateral inflow, the unit impulse response function of such linear 
channel is, 

 u(t ) = δ (t − T)  (15) 

which implies that the downstream outflow is equal to the upstream inflow delayed by a 
lag-time T representing the travel time through the system. 

 The cascade of linear reservoirs model can be modified in order to account for 
translation by using combinations of linear channels and linear reservoirs. Dooge (1959) 
developed a general unit hydrograph theory under the assumption that basin response can 
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be represented by a cascade of linear channels and linear reservoirs in series. For this 
model the drainage area of the watershed is divided into sub areas using the isochrones. A 
linear channel in series with a linear reservoir represents each sub area. If this is done 
assuming a system of n equal linear reservoirs of parameter k and n equal linear channels 
of lag-time T, the IUH or impulse response function is, 

 
un (t) =

1
kΓ (n)

(
t − nT

k
)n−1 e−( t −nT )/ k

 (16) 

As a general rule, linear channels and linear reservoirs can be combined in series and/or 
in parallel to model complex hydrologic systems. 

Conceptual UH’s Based on Relationships Between Hydrologic Response and 
Watershed Characteristics 

 Flow hydrographs travel through a stream network after runoff is generated on the 
hillslopes. The drainage network develops so that a certain load of water and sediment (as 
a result of erosive processes) can be evacuated in an optimal manner (least energy 
expenditure (e.g., Molnár and Ramírez, 1998a, 1998b)). Therefore, the characteristics of 
the outflow hydrograph and the characteristics of the hillslopes and drainage network 
must be intimately linked as they shape and modify each other. 

Geomorphologic Unit Hydrographs. Geomorphologic parameters have been widely used 
to characterize and model hydrologic response. In particular, geomorphologic parameters 
have been used in synthesizing unit hydrographs for gauged and ungauged watersheds; as 
well as for estimating flood potential indices and flood frequency distributions. Recent 
efforts have concentrated on establishing a theoretical link between hydrologic response 
on the one hand, and climatic and geomorphologic characteristics on the other. Even 
though climate and geologic processes are continually changing and affecting hydrologic 
response, at the time scales of interest, climate and geomorphology may be considered 
constant boundary conditions, which uniquely define watershed behavior. The theoretical 
link was developed in the late seventies and early eighties and was based on the ideas of 
the topologically random model for drainage networks. The fundamental postulates of the 
random topological model can be summarized as follows (e.g., Shreve, 1967; Gupta and 
Waymire, 1983; Bras, 1990): 

a) in the absence of natural controls, natural drainage networks are topologically random; 
and, 

b) interior and exterior link lengths, as well as their associated areas, are independent 
random variables. 

The GIUH. Rodríguez-Iturbe and Valdés (1979) linked the hydrologic response of 
watersheds in terms of the IUH to the their geomorphologic parameters, and to a dynamic 
parameter. The IUH is interpreted as the probability density function of the travel times to 
the basin outlet of water droplets randomly and uniformly distributed over the watershed. 
The resulting IUH or impulse response function for the basin is a function of the 
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probability density function of the travel times of droplets in streams of a given order and 
of the transition probabilities of water droplets going from a given state (stream segment) 
to another of higher order. In this model, streams of a given order define the states of the 
system. The travel times in the streams are assumed to be exponentially distributed and 
independent of one another. The initial probabilities of a drop landing anywhere on the 
basin, as well as the transition probabilities which are required in order to define the 
probability function of a particular path that a drop may take to the outlet, can be defined 
as functions of only geomorphologic and geometric parameters. The initial probability of 
a drop falling in an area of order i is equal to the percent contributing area for the given 
order. The initial probabilities are thus related to the average ratio of the average area of 
sub-basins of a given order to the average area of sub-basins of the next higher order (i.e., 
the area ratio, RA). Similarly, the transition probabilities from state i (stream order) to state 
j, where j represents a stream of higher order, are functions of the number of streams of 
order i draining into streams of order j, divided by the total number of streams of order i. 
Thus, the transition probabilities are related to the average ratio of the number of streams 
of a given order to the number of streams of the next order (i.e., bifurcation ratio, RB). 
These ratios are the parameters of the so-called Horton Laws summarized below. 

 The Horton law of stream numbers states that there exists a geometric relationship 
between the number of streams of a given order Nω and the corresponding order, ω. The 
parameter of this geometric relationship is the Bifurcation Ratio, RB. This ratio has been 
found in nature to be between 3 and 5. 

 Nω = RB
Ω −ω  (17) 

 The Horton law of stream lengths states that there exists a geometric relationship 
between the average length of streams of a given order and the corresponding order, ω. 
The parameter of this relationship is the so-called Length Ratio, RL. 

 L ω = L 1RL
ω−1 (18) 

 The Horton law of stream areas states that there exists a geometric relationship 
between the average area drained by streams of a given order and the corresponding order 
ω. The parameter of this relationship is the so-called Area Ratio, RA. This ratio has been 
observed in nature to vary within a narrow range of 3 to 5. 

 A ω = A 1RA
ω−1 (19) 

In the equations above, Ω is the order of the basin, and the over-bar indicates the average 
value of the corresponding variable. 

 Rodríguez-Iturbe and Valdés (1979) suggested that the probability distribution 
function of travel time in streams of a given order is an exponential distribution with 
parameter λ representing the inverse of the mean travel time. They suggest estimating λ as 
the ratio of a characteristic velocity, V, and a characteristic length scale given by the mean 
length of streams of the given order. Valdés et al. (1979) suggest using the peak velocity 
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for the characteristic velocity. Rodríguez-Iturbe and Valdés (1979) obtain expressions for 
the time to peak, tp, and peak discharge, qp, of the IUH which are functions of 
geomorphology, and of the dynamic parameter represented by the peak velocity. Their 
results, obtained through numerical integration of the full GIUH, and multiple regression 
analysis, are simple, elegant, and easy to use. They are, 

 
qp =

1.31
LΩ

RL
0.43V

 (20) 

and, 

 tp =
0.44LΩ

V
( RB

RA

)
0.55

RL
−0.38

 (21)
 

where LΩ, is the length of the highest order stream in kilometers, V is in meters per 
second, and the units of qp and tp are the customary units of inverse time in hours, and 
time in hours, respectively. 

 The dependence of the GIUH on the dynamic parameter V can be used to address 
non-linear watershed response issues. Non-linear effects in the basin response manifest 
themselves in the characteristic discharge velocity. The theoretical framework of the 
GIUH above was verified through numerical experiments with a detailed physically-
based watershed model on several basins in Venezuela and Puerto Rico with excellent 
results (Valdés et al., 1979). They indicate that the nonlinear characteristics of the 
response function of a basin can be modeled with a linear scheme such as the GIUH but 
with a characteristic velocity that is representative of the discharge velocity for the given 
event. Rodríguez-Iturbe et al. (1979) show that the dynamic parameter of the GIUH can 
be taken as the space-time average flow velocity for a given rainfall-runoff event in a 
basin. This is based on the hypothesis of spatial uniformity of the flow velocity 
distribution throughout the river network (Pilgrim, 1976 and 1977). However, Agnese et 
al. (1988) showed that the estimation of the dynamic parameter of the GIUH could also 
be performed for those basins where flow velocity distribution depends on stream order. 

 The parameters of the Nash model and the geomorphologic descriptors of 
drainage networks can be related by relating approximate measures of volume of the IUH 
for a cascade of linear reservoirs and the volume of the GIUH (Rosso, 1984). Rosso 
equated the product of the time to peak and peak flow of the GIUH with the product of 
the time to peak and peak flow of the Nash model IUH. It is simple to show that for the 
GIUH this product equals, 

 05.055.0)(58.0)( L
B

A
GIUHpp R

R
Rqt =  (22) 

and for the Nash model IUH, this product equals, 
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 )(/)1()( )1( αα αα Γ−= −eqt Nashpp  (23) 

These equations allow estimation of the shape parameter. Using numerical algorithms to 
solve the resulting equation Rosso obtained, 

 07.078.0)(29.3 L
A

B R
R
R=α  (24) 

 Ω
−= LVRRRk LBA

148.0)]/([70.0  (25) 

where α and k are the shape parameter and the scale parameter of the Nash model IUH, 
respectively. When the parameters of the Nash model are estimated using these equations, 
and results of their application are compared to other empirical parameter estimation 
procedures, the adequacy of the geomorphologic connection is clearly demonstrated. 
These results improve the prediction capability of the Nash model for regions where no 
hydrologic records exist. The shape parameter of the IUH is shown to be a function only 
of Horton ratios; whereas the scale parameter is shown to depend both on geomorphology 
and streamflow velocity. 

 Geomorphologic IUH's have also been proposed that are based on characterizing 
drainage networks as a function of network links as opposed to streams (Gupta et al., 
1986; Mesa and Mifflin, 1986; Troutman and Karlinger, 1984, 1985, 1986; and Gupta 
and Mesa, 1988.) In that case, the GIUH is expressed in terms of the width function as, 

 ∫
∞

=
0

* ),(),()( dxtxNtxgtu  (26) 

where g(x, t) is the hydrologic response function of a single channel a distance x from the 
basin outlet; and N*(x) is the normalized width function which represents the probability 
density function of the number of links at a distance x from the outlet. N*(x, t) is given by, 

 ∫
∞

=
0

* ),(/),(),( dxtxNtxNtxN  (27) 

where N(x, t) is the width function, which measures the number of links at a distance x 
from the basin outlet. The link-based GIUH above has been approximated by its 
conditional expected value, conditional on a topological parameter vector (Karlinger and 
Troutman, 1985). When the topological parameter is the magnitude M of the network, 
Karlinger and Troutman have shown that, asymptotically for large M and for g(x, t) 
representing a simple translation, the expected conditional value of u(t) is, 
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where M is the magnitude of the basin and equal to the number of first order streams,   l i  is 
the mean length of the interior links, and V is the velocity of translation. Troutman and 
Karlinger show that this result is always true regardless of the form of g(x, t). 

 Finally, Rinaldo et al. (1991) studied hydrologic response by decomposing the 
process of river runoff into two distinct contributions, one accounting for the travel time 
within individual reaches (hydrodynamic dispersion), and the other accounting for river 
network composition (geomorphologic dispersion). Because the analysis showed the 
latter one to play the major role in determining basin response, models based on the 
accurate specification of the geometry and the topology of the network and simplified 
dynamics are theoretically validated irrespective of the choice of the travel time 
probability density function. 

Channel Losses in the GIUH. The GIUH has undergone several modifications and 
enhancements in order to make it more physically-based. One of those modifications 
consists in incorporating channel infiltration losses. Díaz-Granados et al. (1983a), using 
previous results by Kirshen and Bras (1983), derived expressions for the probability 
distribution function of travel times in streams of any given order taking into account 
channel infiltration losses. The channel response to an instantaneous input anywhere 
along the channel is interpreted as the conditional probability distribution function of the 
travel time of a drop traveling a given distance along the channel. This response is 
obtained as the solution of the linearized equations of motion for unsteady flow in a wide 
rectangular channel in which the infiltration losses are assumed to be proportional to the 
instantaneous discharge at any point along the channel. The proportionality coefficient is 
known as the infiltration parameter. Results indicate that the linear reservoir assumption, 
implicit in the GIUH (exponential distribution of stream travel times), is in fact adequate. 

 Studies on the geomorphologic response of river basins have increasingly stressed 
the importance of providing an accurate description of the quantitative properties of river 
network systems. Within this context, for example, La Barbera and Rosso (1987, 1989) 
first indicated the fractal nature of river networks and its relation to quantitative 
geomorphology as initiated by Horton's studies on river network composition. In addition, 
general theories of the evolution of drainage systems have been developed. For example, 
energy dissipation concepts have been used to link the local and global properties of a 
river network to the hydrologic conditions of its watershed (e.g., Howard, 1990; 
Rodríguez-Iturbe et al., 1992; Rigon et al., 1993; Molnár and Ramírez, 1998a, 1998b). 
These general theories allow for a fundamental description of global network properties 
and thus should be incorporated into improved geomorphologic models of basin response. 

The Climatic GIUH - The GcIUH. The instantaneous unit hydrograph is derived under the 
assumption that it is a random function of climatic and geomorphologic characteristics 
and that it varies with the characteristics of the rainfall excess. Accordingly, Rodríguez-
Iturbe et al. (1982a) obtain probability density functions of the peak discharge and the 
time to peak as functions of the rainfall intensity, i, and duration, tr, as well as 
geomorphology. Rainfall is characterized by a constant intensity over the storm duration, 
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or a rectangular pulse process. These two characteristics, together with geomorphologic 
parameters for a first order basin, define the dynamic parameter of the GIUH. 

 Using the kinematic wave approximation for flow routing along streams of first 
order, and a derived distribution approach, Rodríguez-Iturbe et al. (1982a) obtained 
analytical expressions for the probability density functions of the time to peak, tp, and the 
peak discharge, qp, of the GIUH that depend on the mean rainfall intensity; hence the 
name GcIUH. These probability distribution functions assume that the time of 
concentration of first order streams is much smaller than the duration of the rainfall. They 
are, 

 
f (qp ) = 3.534Πqp

1.5 exp(−1.412Πqp
2.5 )

f (tp ) = 0.656Π
tp

3.5 exp(−0.262Π
tp

2.5 )
 (29)

 

 where, 

 5.1

5.2

ΩΩ

Ω=Π
αLRAi

L  (30) 

 The first moments of peak discharge and time to peak of the GcIUH can be 
obtained as, 

 
E(qp ) =

0.774
Π 0.4

σqp =
0.327
Π0. 4

 
E( tp ) = 0.858Π 0.4

σtp = 0.915Π 0.4

 (31)
 

where LΩ, is the length of the highest order stream in kilometers, AΩ, is the basin area in 
square kilometers, i  is the mean rainfall intensity in centimeters per hour, and αΩ is in s-

1m-1/3. The units of qp and tp are the customary units of inverse time in hours, and time in 
hours, respectively. 

 For individual storm events, the above equations can be manipulated to obtain 
expressions for the peak discharge and time to peak as functions of the particular storm 
intensity and duration. These expressions lead to, 

 4.0
871.0

Π
=pq  (32a) 
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 The GcIUH establishes a link between climate, watershed geomorphology, and 
the hydrologic response of the basin. Furthermore, the GcIUH allows estimation of the 
IUH for a given particular rainfall input, so that problems associated with nonlinear basin 
behavior are avoided. For example, runoff from a given rainfall event can be computed 
using an IUH derived from the given storm event characteristics, thereby avoiding the 
well-known errors incurred when using an IUH based on a different event. 

 Rodríguez-Iturbe et al. (1982b) compare results by the GcIUH theory with results 
obtained from IUH's derived from simulated rainfall-runoff events for one basin and three 
different climates. The theoretical distributions of the time to peak and peak discharge 
compare very well with the experiments. Variations in qp and tp resulting from non-linear 
basin behavior induce large uncertainty in the predicted peak discharge and time to peak 
for individual events, when using traditional UH approaches (e.g., Caroni et al. 1986, 
Caroni and Rosso 1986, and Rosso and Caroni 1986.) These problems are avoided if the 
GcIUH is used, due to its functional dependence on the rainfall characteristics. 

Snyder’s Synthetic Unit Hydrograph 

 The synthetic unit hydrograph of Snyder (1938) is based on relationships found 
between three characteristics of a standard unit hydrograph and descriptors of basin 
morphology. These relationships are based on a study of 20 watersheds located in the 
Appalachian Highlands and varying in size from 10 to 10,000 square miles. The 
hydrograph characteristics are the effective rainfall duration, tr, the peak direct runoff 
rate, qp, and the basin lag time, tl. From these relationships, five characteristics of a 
required unit hydrograph for a given effective rainfall duration may be calculated (e.g., 
Chow et al., 1988; Bras, 1990): the peak discharge per unit of watershed area, qpR, the 
basin lag, tlR, the base time, tb, and the widths, W (in time units) of the unit hydrograph at 
50 and 75 percent of the peak discharge. 

Standard unit hydrograph. A standard unit hydrograph is associated with a 
specific effective rainfall duration, tr, defined by the following relationship with basin lag, 
tl, 

 tl = 5.5tr  (33) 

For a standard unit hydrograph the basin lag, tl, and the peak discharge, qp, are given by, 

 3.0
1 )( ctl LLCCt =  (34) 

 qp =
C2Cp A

tl

 (35) 

 The basin lag time of the standard unit hydrograph (equation 34) is in hours, L is 
the length of the main stream in kilometers (miles) from the outlet to the upstream divide, 
Lc is the distance in kilometers (miles) from the outlet to a point on the stream nearest the 
centroid of the watershed area, and C1 = 0.75 (1.0 for English units). The product LLc is a 
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measure of watershed shape. Ct is a coefficient derived from gauged watersheds in the 
same region, and represents variations in watershed slopes and storage characteristics. 
The peak discharge of the standard unit hydrograph (equation 35) is in m3/s (cfs), A is the 
basin area in km2 (mi2), and C2 = 2.75 (640 for English units). As Ct, Cp is a coefficient 
derived from gauged watersheds in the area, and represents the effects of retention and 
storage. 

 To compute Ct and Cp for a gauged watershed, the values of L and Lc are 
measured. From a derived unit hydrograph of the watershed, values of its associated 
effective duration tR in hours, its basin lag tlR in hours, and its peak discharge qpR in m3/s 
are obtained. If tlR = 5.5tR, then the derived unit hydrograph is a standard unit hydrograph 
and tr = tR, tl = tlR, and qp = qpR, and Ct and Cp are computed by the equations for tl and qp 
given above, corresponding to the standard unit hydrograph. 

 If tlR is quite different from 5.5tR , the standard basin lag is computed using: 

 tl = tlR +
tr − tR

4
 (36) 

This equation must be solved simultaneously with the equation for the standard unit 
hydrograph lag time, tl = 5.5tr, in order to obtain tr and tl. The value of Ct is then obtained 
using the equation for tl corresponding to the standard unit hydrograph. The value of Cp is 
obtained using the expression for qp corresponding to the standard unit hydrograph, but 
using qp = qpR and tl = tlR. 

When an ungauged watershed appears to be similar to a gauged watershed, the 
coefficients Ct and Cp for the gauged watershed can be used in the above equations to 
derive the required synthetic unit hydrograph for the ungauged watershed. 

Required unit hydrograph.  The peak discharges of the standard and required 
UH’s are related as follows, 

 qpR =
qptl

tlR

 (37) 

 Assuming a triangular shape for the UH, and given that the UH represents a direct 
runoff volume of 1 cm (1 in), the base time of the required UH may be estimated by, 

 tb =
C3 A
qpR

 (38) 

where C3 is 5.56 (1290 for the English system). 

 As an aid in drawing an adequate UH, the U.S. Army Corps of Engineers 
developed relationships for the widths of the UH at values of 50% (W50) and 75% (W75) 
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of qpR. The width in hours of the UH at a discharge equal to a certain percent of the peak 
discharge qpR is given by Chow et al. (1988) as, 

 
08.1

%

−






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=

A
q

CW lR
w  (39) 

where the constant Cw is 1.22 (440 for English units) for the 75% width and equal to 2.14 
(770 for English units) for the 50% width. Usually, one-third of this width is distributed 
before the peak time and two-thirds after the peak time, as recommended by the U.S. 
Army Corps of Engineers. However, several other authors have recommended different 
distribution ratios. For example, Hudlow and Clark (1969) recommend a partition of 4/10 
and 6/10, respectively. 

 Figure 11.2 illustrates the form of Snyder’s synthetic UH. Note that the time lag is 
not the same as the time to peak. Also, note that the widths of the hydrograph at 50% and 
75% of the peak flow are distributed such that the longer time is to the right of the time to 
peak. 
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 Figure 11.2: Snyder’s Synthetic Unit Hydrograph 

Conceptual UH’s Based on Dimensionless Hydrographs 

Soil Conservation Service Dimensionless Hydrograph.  The dimensionless unit 
hydrograph developed by the Soil Conservation Service has been obtained from the UH’s 
for a great number of watersheds of different sizes and for many different locations. The 
SCS dimensionless hydrograph is a synthetic UH in which the discharge is expressed as a 
ratio of discharge, q, to peak discharge, qp and the time by the ratio of time, t, to time to 
peak of the UH, tp. Given the peak discharge and the lag time for the duration of the 
excess rainfall, the UH can be estimated from the synthetic dimensionless hydrograph for 
the given basin. 
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   Figure 11.3: SCS Dimensionless Unit Hydrograph 

The SCS suggests that the dimensionless UH can be described in terms of an 
equivalent triangular hydrograph. The values of qp and tp can then be estimated using this 
simplified triangular unit hydrograph whose height is equal to qp and whose time base, tb, 
is equal to 2.67 tp. The time is usually expressed in hours (SCS), and the discharge in 
m3/s/cm (or cfs/in). After analysis of a great number of UH’s, the SCS recommends a 
recession duration of 1.67 tp. Because the volume of direct runoff must equal 1 cm, it can 
be shown that qp=C A/ tp where C = 2.08 (483.4 in the English system) and A is the 
drainage area in square kilometers (square miles). From a study of many large and small 
rural watersheds the basin lag is tl = 0.6tc, where tc is the time of concentration of the 
watershed. The time to peak, tp, is then equal to tr/2+tl (e.g., U.S. Soil Conservation 
Service, 1985). 

Flood Frequency Distributions and Climatic GIUH. Eagleson (1972) presents a general 
framework for the development of flood frequency distributions, F(Qp)(see also 
Stedinger, Chapter 12, this volume). Based on Eagleson's framework (see Figure 11.4), 
several authors have developed flood frequency distributions that include various 
assumptions about the characteristics of the rainfall process in terms of its probability 
density function, fI(i), and the watershed processes transforming rainfall into runoff 
encoded in the function g(i,t;θ). Either using numerical or analytical procedures these 
authors have arrived at different flood frequency distributions. One of the most recent and 
most interesting developments has been the use of the GIUH concept in order to quantify 
and analyze the effect of geomorphologic characteristics in the determination of regional 
flood frequency. 
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Figure 11.4. General framework for flood frequency analysis (adapted from Eagleson, 
1972.) 

 Hebson and Wood (1982) derived a flood frequency distribution function from 
assumed climatic distributions for the rainfall parameters and using the GIUH as the 
transformation function of rainfall into runoff. These authors assume a model of 
rectangular pulses for storms whose intensity and duration are independent, and 
exponentially distributed random variables. In terms of the equivalent recurrence interval, 
TE, Hebson and Wood obtain, 

 
ln TE = −ln[λ exp(−λtre0

t k∫ −β * (Qp −Qb ) / Acg( tre))dtre +

exp(−λtk − β* (Qp − Qb ) / Ac )] − ln n
 (40) 

where n is the average number of annual direct runoff events, Qp is the flood peak under 
consideration, Qb is the base flow, Ac is the contributing area, g(t) is the area under the 
GIUH as a function of time, tre is the duration of excess rainfall, tk is the duration of the 
GIUH or kernel length, λ is the inverse mean duration of rainfall events, and β* is a 
modified areal inverse mean intensity of rainfall events. They applied this concept to two 
third-order basins, namely the Bald Eagle Creek in Pennsylvania, and the Davidson River 
in North Carolina. Comparisons of their flood frequency distributions with the one 
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derived by Eagleson (1972), which is based on kinematic wave concepts for overland 
flow, indicate that the best-fit GIUH produces better representation of the observed flood 
frequency distributions. 

 Díaz-Granados et al. (1983, 1984) derived a flood frequency distribution based on 
the GcIUH. Effective rainfall intensity, ie, and effective rainfall duration, te, were obtained 
by assuming precipitation to be a process of rectangular pulses, and runoff to be generated 
only by the Horton infiltration excess mechanism. Runoff is then generated only when the 
precipitation intensity exceeds the soil infiltration capacity. Infiltration capacity was 
defined by using Philip's solution to the one-dimensional, concentration-dependent 
equation of the diffusion process in unsaturated porous media. Storm intensity and 
duration were assumed to be independent and exponentially distributed random variables. 
They used a derived distribution approach in order to link the joint probability 
distribution function of storm duration and storm intensity and a physically-based 
representation of the infiltration process in order to obtain the joint probability density 
function of effective storm duration and effective storm intensity. This derived 
distribution was used together with a triangular representation of the GcIUH in order to 
obtain a flood frequency distribution. The flood frequency distributions obtained by this 
method depend on climatic and geomorphologic parameters of the watershed as well as 
on soil properties governing the infiltration process. In terms of the equivalent recurrence 
interval, their derived flood frequency distribution is, 

 )](1[1
PQE QFnT −=−  (41) 

 ][)1()2exp(1)(
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1
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iQQ JIaQF σσσσβδ  (42) 

where I, and Ji are integral equations that cannot be solved analytically, and which depend 
on the mean intensity and the mean duration of precipitation events, as well as on the 
infiltration sorptivity of the soil, the discharge under consideration, and geomorphologic 
parameters of the watershed (see Díaz-Granados et al., 1984). 

 Given that the above distribution depends on the elusive initial soil moisture, 
Díaz-Granados et al. (1984) resort to using arguments of ecological optimality for water-
limited natural systems in order to define a long term average soil moisture, so. Using this 
approach, they verified their flood frequency distribution against observed distributions 
from two very different climatic regimes. Their results indicate good agreement for both 
wet and arid climates, although the agreement is better for the arid climate of Santa Paula 
Creek in California than for the wet climate of the Nashua River basin in New 
Hampshire. 

 However, obtaining the analytical form of the flood frequency distribution from 
climate and geomorphology often results in a cumbersome derivation, sometimes yielding 
implicit equations to be solved numerically. To overcome this problem, Adom et al. 
(1989) introduced the method of approximate moments by Taylor series to estimate 
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second order statistics of both flood peak and volume. For this purpose, they used the Soil 
Conservation Service's Curve Number method to describe basin rainfall excess, and the 
GIUH to model surface runoff response. After a given type of frequency distribution has 
been identified at the regional scale by analyzing annual flood series, this method can be 
used to estimate the flood frequency distribution for ungauged catchments. 

FLOOD ROUTING 

 The term flood routing refers to procedures to determine the outflow hydrograph 
at a point downstream in a river (or reservoir) as a function of the inflow hydrograph at a 
point upstream. 

 As flood waves travel downstream they are attenuated and delayed. That is, the 
peak flow of the hydrograph decreases and the time base of the hydrograph increases. The 
shape of the outflow hydrograph depends upon the channel geometry and roughness, bed 
slope, length of channel reach, and initial and boundary flow conditions. 

 The propagation of flood waves in a channel is a gradually varied unsteady flow 
process, which is governed by conservation of mass and momentum equations. The 
solution of these equations in a distributed manner is referred to as distributed routing of 
flood waves. When no spatial variability is taken into account and when the channel reach 
or reservoir is considered as a black box, the corresponding routing procedure is referred 
to as lumped routing. 

Lumped Flood Routing 

 Lumped or hydrologic routing is governed by the continuity equation and a 
storage-discharge functional relationship. The continuity equation is, 

 
dS(t)

dt
= I(t) − O(t)  (43) 

In this equation, S(t) is the storage within the system (channel reach or reservoir), I(t) is 
the inflow hydrograph at the upstream end of the reach, and O(t) is the outflow 
hydrograph at the downstream end of the reach. The continuity equation can be integrated 
over a given ∆t to obtain, 

 S(ti + 1) − S(ti ) = dS(t) = I(t)dt
ti

t i+1

∫
S(ti )

S(t i+ 1)

∫ − O(t)dt
ti

ti+1

∫  (44) 

where the subscripts i and i+1 refer to the beginning of two consecutive time intervals. 
Assuming a linear variation of input and output fluxes during the ∆t leads to, 

 S(ti + 1) − S(ti ) =
∆t
2

[ I(ti + 1) + I(ti )] −
∆t
2

[O(ti +1 ) + O(ti)]  (45) 
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 In equation (46) there are two unknown quantities, S(ti+1) and O(ti+1). Thus, a 
second equation relating S(t) and O(t) is required. The nature of this relationship may be 
linear, or non-linear, or one to one, or hysteretic. The complexity of the routing procedure 
depends on the nature of this relationship. 

 Reservoir or level pool routing refers to flood routing for systems whose storage 
and outflow are related by a function of the type S(t) = f[O(t)] which is one-to-one (i.e., 
unique, non-hysteretic). This characteristic of their S vs. O relationships implies that for a 
given set of conditions (e.g., stage or storage) the outflow is unique, independent of how 
that storage is achieved. Such systems have a pool that is wide and deep compared to its 
length in the direction of flow, low flow velocities, and horizontal water surfaces or 
negligible backwater effects. Reservoirs or systems with horizontal water surfaces have 
relationships of the one-to-one type. 

 The solution procedure involves rearranging the continuity equation such that all 
unknown quantities are on the left hand side of the equation, 

 
2S(ti + 1)

∆t
+ O(ti + 1) = [ I(ti +1 ) + I(ti )] + [2S(ti )

∆t
− O(ti)]  (46) 

For level pool systems, the storage and the outflow are one-to-one functions of elevation 
(see Figures 11.5 and 11.6). 
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  Figure 11.5: Storage vs. Elevation Relationship 
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  Figure 11.6: Elevation vs. Discharge Relationship 
 

Thus, the left hand side of the equation above is a unique function of water 
surface elevation in the system, only. Usually, the storage-elevation relationship is 
available from topographic surveys, and the outflow-elevation relationship is available 
from hydraulic considerations with respect to the outlet structures (e.g., spillways, etc.). 

 The solution involves the development of the function 2S/∆t + O = f[O(h)] (see 
Figure 11.7) and then using the function sequentially to solve for O(ti+1) for every time 
step. In this equation, h is water surface elevation in the reservoir. 

 

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

2S/∆t+O (m3/s)

D
is

ch
ar

ge
 (m

3 /s
)

 

  Figure 11.7: Storage-Indication Function 

 As observed in Figure 11.8, the effect of storage is to redistribute the flow 
hydrograph by shifting its centroid from the position of that of the inflow hydrograph to 
that of the outflow hydrograph. For these systems, the peak outflow occurs when the 
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outflow hydrograph intersects the inflow hydrograph, at which time the maximum storage 
in the system is also achieved (see Figure 11.8). 
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   Figure 11.8: Level Pool Routing: Inflow and Outflow Hydrographs 

Channel Routing The storage-discharge relationship in the case of channel routing is 
not one-to-one, but hysteretic. In other words, the outflow from a given reach is not a 
single valued function of the storage in the reach. In its most simple interpretation, the 
magnitude of the outflow discharge depends on whether the outflow is occurring during 
the rising limb or the recession limb of the inflow hydrograph. This behavior is a result of 
backwater effects, which are important in long and narrow flow routing conditions such 
as occur in channels. 

 The Muskingum method is one of the most widely used methods of lumped, 
channel flow routing. In addition to the lumped form of the continuity equation, 

 
dS(t)

dt
= I(t) − O(t)  (43) 

this method assumes a linear storage discharge relationship as given below, 

 S(t) = k[xI(t) + (1− x)O(t)]  (47) 

This relationship specifies that the storage is proportional to a convex linear combination 
of inflow and outflow rates. The Muskingum method has two parameters, k and x. 
Parameter k has units of time and represents the average travel time of a kinematic wave 
through the reach, and it is known as the storage time constant. Parameter x is 
dimensionless and represents the relative importance of the effects of inflow rates on 
defining the storage in the reach. Theoretically this parameter varies between 0 and 1. 

 Combining the continuity and storage equations, and integrating over a short time 
interval, the outflow at the end of a given time interval, O(ti+1) can be expressed as a 
linear combination of the inflow rates at the beginning and end of the given interval, I(ti) 
and I(ti+1), as well as the outflow rate at the beginning of the interval, O(ti) as, 



  Jorge A. Ramírez 
 

 28 

 O(ti +1 ) = CoI(ti+ 1) + C1I(ti ) + C2O(ti)  (48) 

The coefficients or weights of this linear combination can be computed as a function of k, 
x, and ∆t as indicated below, 

 Co = (−kx + 0.5∆t) /C3  (49a) 

 C1 = (kx + 0.5∆t) /C3  (49b) 

 C2 = (k − kx − 0.5∆t) / C3  (49c) 

 C3 = k − kx + 0.5∆t  (49d) 

It is simple to show that the Muskingum routing solution can be expressed also as a 
discrete convolution equation as, 

 Qn = In−m + 1
m= 1

n

∑ Um  (50) 

where Um is the UH of the Muskingum method whose ordinates are given by the 
following equations, 

 
U1 = Co

U2 = CoC2 + C1

Um = Um− 1C2 , m > 2
 (51) 

 The Muskingum parameters k and x can be easily estimated graphically, or by 
using the least-squares method. The graphical method consists in choosing x such that the 
loop resulting from the plot of S vs. (xI + (1-x)O) becomes as close to a straight line as 
possible (see Figure 11.9a-d). The slope of the resulting straight line is an estimate of the 
parameter k (see equation 47). In order to ensure positivity of the unit hydrograph 
ordinates, ∆t must be selected such that x < 0.5 ∆t/k < 1-x. 

This method results in a trial and error procedure which, when properly carried 
out, constitutes a graphical implementation of the least-squares method. Or in other 
words, the least-squares method is a numerical expression of the graphical method. 
Observe that routing in systems with hysteretic S vs. O relationships leads to additional 
modifications of the inflow hydrograph represented in a delay of the response of the 
system and in asynchronous occurrences of the maximum storage and maximum outflow, 
the latter occurring after the former (see Figure 11.10). 
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  Figure 11.9a: Weighted Average Influx vs. Storage Function - x = 0.05. 
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  Figure 11.9b: Weighted Average Influx vs. Storage Function - x = 0.08. 
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  Figure 11.9c Weighted Average Influx vs. Storage Function - x = 0.09. 
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  Figure 11.9d Weighted Average Influx vs. Storage Function - x = 0.10 
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  Figure 11.10: Muskingum Routing: Inflow and Outflow Hydrographs 

 

 Using a hydraulic analogy and applying the Muskingum equations over a short ∆x, 
the Muskingum routing equation constitutes an approximate solution to the kinematic 
wave equations (see Distributed Flood Routing section below) (Cunge, 1969). Expressing 
the solution in a space-time domain, the Muskingum routing equations can be rewritten 
as, 

 Qi +1
j +1 = CoQi

j +1 + C1Qi
j + C2Qi +1

j  (52) 

where the flow discharge j
iQ  refers to position i in space and j in time. In this solution, 

the parameters k, and x, required in order to obtain Co, C1, C2, and C3 are estimated as,  

 k =
∆x
ck

 (53a) 
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 x =
1
2

(1−
Q

ck BSo∆x
)  (53b) 

In addition, Cunge also demonstrated that this solution constitutes an approximate 
solution of a modified diffusion equation if the parameters k and x are estimated as 
expressed above. In those equations, ck is the celerity of the kinematic wave 
corresponding to Q and B, where B is the width of the water surface, Q is the discharge, A 
is the cross sectional area of flow, So is the bottom slope, and ∆x is the increment in space. 
Based on this analysis, it can be shown that x should be between 0 and 0.5. 

Distributed Flood Routing 

 The characteristics of hydrologic systems are extremely variable in space and 
time. The excitation of the system (i.e., precipitation), the initial conditions, and the 
boundary conditions are, in general, functions of space and time. Therefore, the response 
of the system, that is, the flow of water through the soil and in the channels, is a 
distributed process in which the characteristics of the flow change both in time and space. 
Flow characteristics such as flow discharge, flow depth, and flow velocity can be 
obtained as a function of space and time using a dynamic, distributed flow routing 
procedure. 

 The governing equations for one-dimensional, unsteady flow in an open channel 
are, 

 
∂Q
∂x

+
∂A
∂t

= q  (54) 

 
∂Q
∂t

+
∂(βQ2 / A)

∂x
+ gA(∂y

∂x
− So + Sf ) − βqvx = 0

 (55) 

where Q is discharge, A is the cross sectional flow area, y is flow depth, So is the channel 
bottom slope, Sf is the friction slope, β is the momentum correction coefficient for non-
uniform flow velocity distribution, q is lateral inflow per unit length of flow, and vx is the 
magnitude of the lateral inflow velocity component in the direction of flow. 

 These two equations are known as the de Saint-Venant equations. The main 
assumptions encoded in these equations are: 1) the flow is one-dimensional; 2) the 
vertical accelerations are negligible so that the vertical pressure distribution is hydrostatic 
(gradually varied flow); 3) the slope of the channel bottom is small and the channel 
bottom is fixed; 4) resistance coefficients for steady uniform turbulent flow are 
applicable; and 5) the fluid is incompressible and of constant density. 

 The momentum equation includes terms for changes in momentum due to: a) 
changes in velocity over time (local acceleration); b) changes in velocity in space along 
the channel (convective acceleration); c) water level differences along the channel and 
consequent imbalance of pressure forces; d) gravitational acceleration; e) frictional 
forces; and f) lateral inflow. Local and convective accelerations represent the effect of 
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inertial forces in the flow. Depending on the flow conditions, some of these terms may be 
negligible as compared to others in the equation giving rise to either kinematic, or 
diffusive, or full dynamic wave situations. This sometimes leads to simplifications of the 
flood routing problem (e.g., Chow et al, 1988; Singh, 1989; Bras, 1990). 

Kinematic Waves. Kinematic waves govern the flow when inertial and pressure forces 
are not important. In natural flood wave conditions both kinematic and dynamic waves 
are present. However, for situations where the Froude number is less than 2, dynamic 
waves tend to attenuate more rapidly than kinematic waves (e.g., Eagleson, 1970). 
Although there is no single set of criteria to define when a kinematic wave solution is 
acceptable, the magnitude of the so-called kinematic parameter is useful. The kinematic 
parameter is defined as, 

 K =
SoL
yoF 2  (56) 

where So is the bottom slope, L is the length of (overland or channel) flow, yo is the 
normal flow depth at the downstream end of the flow length, and F is Froude number for 
normal flow at the downstream end of the flow length. Woolhiser and Liggett (1967) 
have shown that for K values greater than 10, the flow dynamics tend to be dominated by 
kinematic waves. In overland flow situations the value of K usually exceeds this 
threshold, (K~O(102 - 103)), warranting a kinematic wave approach for such flow routing 
problems. 

 For a kinematic wave, the momentum equation reduces to, 

 fo SS =  (57) 

implying that the energy grade line is parallel to the channel bottom, and that the flow is 
steady and uniform. The above momentum equation can be shown to be equivalent to the 
following stage-discharge relationship, 

 βαAQ =  (58) 

which, for example, can be satisfied by Manning equation, 

 AR
n
S

Q f 3/2=  (59) 

 Together with the continuity equation, 

 q
t
A

x
Q =+

∂
∂

∂
∂  (54) 

these equations represent the routing equations for the kinematic wave flow routing 
approach. 
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 If an observer moves with the kinematic wave at a speed equal to the kinematic 
wave celerity, the observer would see the flow rate increase at a rate equal to the lateral 
inflow rate, q, as shown below, 

 q
t
Q

cx
Q

dx
dt

t
Q

x
Q

dx
dQ

k

=+=+=
∂
∂

∂
∂

∂
∂

∂
∂ 1  (60) 

It can be seen that for conditions of no lateral inflow, that is, for q = 0, dQ/dt = 0. Thus, 
kinematic waves do not attenuate; they simply translate downstream without dissipation. 
Given that at any cross section Q and A are functionally related as Q = αAβ, the continuity 
equation can be rewritten as, 

 
∂Q
∂x

+
dA
dQ

∂Q
∂t

= q  (61) 

and, 

 
∂A
∂t

=
dA
dQ

∂Q
∂t

=
1

αβAβ −1 (
∂Q
∂t

)  (62) 

 

∂Q
∂x

+
1

αβAβ −1 (
∂Q
∂t

) =
∂Q
∂x

+
Q1/ β − 1

α 1/ ββ
∂Q
∂t

= q
 (63) 

From equations 60 and 63, it is easy to obtain the following expression for the kinematic 
wave celerity, 

 ck =
dQ
dA

= αβAβ − 1 (64) 

 Assuming that overland flow situations can be described as flow over planes, the 
kinematic wave approximation has been widely applied to construct models of the 
rainfall-runoff process. A basin is described as a collection of such overland flow planes 
representing the hillslope processes feeding into a network of collector channels which 
feed into a main channel. In this application, the lateral inflow is taken to be equal to the 
rainfall excess, and the channel inflow is taken to be flow per unit width of plane. The 
kinematic wave model offers the advantage over the unit hydrograph method that it is a 
one-dimensional, spatially-distributed solution of the physical equations governing the 
surface flow. Furthermore, for overland flow waves in the case of homogeneous planes, 
the kinematic wave equations have explicit analytical solutions. However, more complex 
representations of the flow process must sometimes be used -- two-dimensional and fully 
dynamic. 

 In general, the Saint-Venant equations do not have explicit analytical solutions, 
except in a few particular cases (e.g., kinematic waves for homogeneous planes). Thus, 
numerical solution procedures must be used, like finite-differences methods, or the 
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method of characteristics. Finite difference methods solve the partial differential 
equations on a grid placed over the x-t plane. For the kinematic wave problem presented 
above, these solutions can be linear or non-linear. 

 A simple implementation of the linear and non-linear solutions suggested by 
Chow et al., (1988) is adapted below. For the linear solution, the equation is linearized by 
substituting an average of known solutions for the coefficient of the nonlinear term. This 
leads to the following solution, 

 
Qi +1

j +1 − Qi
j +1

∆x
+

1
α 1/ ββ

(
Qi +1

j + Qi
j + 1

2
)1 / β −1 (

Qi+ 1
j +1 − Qi+ 1

j

∆t
) = (

qi +1
j + 1 + qi+1

j

2
)  (65) 

 Qi +1
j +1 =

[ ∆t
∆x

Qi
j +1 + 1

α 1/ ββ
Qi + 1

j (Qi +1
j + Qi

j +1

2
)1/ β− 1 + ∆t(qi +1

j +1 + qi +1
j

2
)]

[ ∆t
∆x

+ 1
α 1/ ββ

( Qi + 1
j + Qi

j + 1

2
)1 / β −1 ]

 (66) 

In this linear solution, the subscript refers to the space coordinate and the superscript 
refers to the time coordinate. The solution advances on a time line from upstream to 
downstream. 

 For the nonlinear kinematic wave solution, the partial differential equations are 
recast in finite difference form as shown below. The same subscript and superscript 
convention applies as for the linearized solution. 

 
Qi +1

j +1 −Qi
j +1

∆x
+

Ai +1
j +1 − Ai +1

j

∆t
=

qi+1
j +1 + qi +1

j

2
 (67) 

 
∆t
∆x

Qi+ 1
j +1 +α −1/ β(Qi +1

j + 1)1 / β =
∆t
∆x

Qi
j +1 + α −1/ β (Qi +1

j )1/ β + ∆t(qi +1
j +1 + qi +1

j

2
)
 (68) 

 
C =

∆t
∆x

Qi
j + 1 + α −1/ β (Qi +1

j )1/ β + ∆t(qi +1
j +1 + qi +1

j

2
)
 (69) 

An iterative solution based on Newton’s method is shown below. 

 
f (Qi+1

j +1 ) =
∆t
∆x

Qi + 1
j+ 1 +α −1/ β(Qi +1

j + 1)1 / β − C
 (71) 

 
f ' (Qi + 1

j +1) =
∆t
∆x

+
1

α 1/ ββ
(Qi +1

j + 1)1 / β −1

 (72) 
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(Qi +1
j + 1)k +1 = (Qi+ 1

j +1 )k −

∆t
∆x

(Qi+1
j +1 )k + α −1/ β [(Qi + 1

j +1)k ]1/ β − C
∆t
∆x

+ 1
α 1/ ββ

[(Qi+ 1
j +1 )k ]1 / β −1

 (73) 

 Newton’s method is an iterative numerical solution procedure, which 
progressively determines improvements to a trial solution as a function of the gradient of 
the function at the trial solution. The method converges relatively quickly. A convergence 
criterion can be defined in advance, so that a solution is reached when this criterion is met 
(e.g., the magnitude of the improvement is less than a threshold). 

Dynamic Waves. Dynamic waves govern the flow whenever inertial and pressure 
forces are significant when compared to the gravitational and frictional forces. This 
condition occurs for unsteady, non-uniform flows for which backwater or tidal effects are 
important as, for example, during the movement of a flood wave in a system of channels 
of shallow slopes, and may be induced by downstream reservoirs or other downstream 
controls, by tributaries, by tides, by storm surges (e.g., caused by hurricanes), or by large 
discontinuities in the flow characteristics as a result of dam breaks or large reservoir 
releases.  As indicated above for the case of hydraulic river routing, backwater effects 
induce rating curves that are hysteretic, that is, rating curves for which the discharge is 
not a single valued function of stage (i.e., storage per unit length of channel) in the 
section. 

Full dynamic wave flood routing models can be both steady-state and unsteady-
state models. The Hydrologic Engineering Center's River Analysis System (HEC-RAS) 
model is an example of a steady-state flow model used for the computation of water 
surface profiles associated with one dimensional, gradually varied, steady flows. HEC-
RAS is designed to perform one-dimensional hydraulic simulations for a network of 
channels, and computes surface water profiles associated with subcritical, supercritical, 
and mixed flow regimes. Surface water profiles are solved sequentially by solving the 
energy equation using an iterative algorithm called the standard step method. The energy 
equation is, 

 eh
g
vZY

g
vZY +++=++

22

1
11

11

2
22

22
αα  (74) 

where he is the energy head loss, Yi is the surface water depth at section i, Zi is the 
elevation of the channel bottom at section i, vi is the average velocity at cross section i, 
and g is the acceleration of gravity. The energy head loss between two cross sections 
accounts for friction losses and for losses induced by contractions or expansions and is 
evaluated as, 

 
g
v

g
vCLSh fe 22

2
22

2
11 αα −+=  (75) 
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where L is the reach length weighted by discharge, Sf is a representative friction 
slope between the two sections, and C is a coefficient for expansion/contraction losses. 
For situations where flow regimes change abruptly from supercritical to subcritical or 
vice versa, the HEC-RAS model uses the steady state momentum equation instead, as the 
energy equation is not applicable under those conditions. The momentum equation is 
written in this case as, 

 xfx vQFWPP ∆=−+− ρ12  (76) 

where Pi is the hydrostatic pressure force at section i, Wx is the component of the 
weight of the water in the section in the direction of flow, Ff is the force due to friction in 
the reach between sections, Q is the discharge, ρ is the density of water, and ∆vx is the 
change in average velocity within the reach. In addition, the model allows for the 
specification of variable cross sectional characteristics, both at a section and along the 
channel.  Common applications of the HEC-RAS model include flood plain delineation 
and analysis for flood protection and insurance purposes, modeling of single and/or 
multiple culverts and bridges, modeling of gated spillways and weirs, modeling of 
floodway encroachment, and of ice-covered rivers. 

In the context of fully dynamic, unsteady flows, the models of the National 
Weather Service developed by Fread and collaborators are well documented and 
commonly used (e.g., Fread, 1974, 1976, 1978, 1988; Fread and Lewis, 1988). Among 
these models are the DWOPER model (Dynamic Wave Operational Model) (Fread, 
1978), the DAMBRK model for dam failure studies (Fread, 1988), and the FLDWAV 
model (Fread and Lewis, 1988) which synthesizes DWOPER and DAMBRK. These and 
similar models solve the fully unsteady dynamic wave equations using finite differences. 
However, the treatment and presentation of the details of the solution is beyond the scope 
of this chapter. For those details the reader is kindly referred to the above references and 
those given therein. 

DISTRIBUTED WATERSHED MODELS 

 Distributed and semi-distributed watershed models are generally categorized into 
single-event simulation models and continuous simulation models. The former models are 
concerned with simulating a single flood as a result of the occurrence of an individual 
precipitation or flood-inducing event. The latter models are concerned with the simulation 
of watershed processes during a period of time that encompasses more than one 
precipitation or flood-causing event. Thus, continuous models are also concerned with 
evaporation and sub-surface soil moisture redistribution during the inter-storm periods. 
Most of these models include elements or components that are described using the 
concepts of previous sections in this chapter. However, it is implied that watershed 
models deal with the transformation of precipitation into runoff, whereas some of the 
approaches presented earlier in this chapter are concerned simply with the translation of a 
flood wave, not necessarily with the complete precipitation-runoff transformation. These 
models are then referred to as flood hydraulics models (e.g., HEC-RAS.)  
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Single-Event Simulation Models 

There exists a great variety of single event watershed models. Singh (1989) 
provides a summary table listing fifteen such models and reviews some of them. The 
following sections are based on the review presented in Ramírez et al. (1994). Reference 
is made to two models developed by the U.S. Geological Survey and one developed by 
the Hydrologic Engineering Center of the U.S. Corps of Engineers.  However, many other 
alternative models are available such as the TR-20 (U.S. Soil Conservation Service, 
1973), SWMM (Metcalf & Eddy Inc., 1971), IHM (Morris, 1980), and FLEA (Ranzi and 
Rosso, 1991a). 

 The USGS rainfall-runoff model (Dawdy and O'Donnell, 1965) was one of the 
first single event models developed to predict flood volume and peak rates of runoff for 
small drainage areas.  The model has been utilized by the U.S. Geological Survey in over 
twenty states to develop peak flows and hydrographs for state highway agencies.  The 
process is triggered by the precipitation input P, which augments surface storage R, which 
in turn is depleted by infiltration F and evaporation ER.  The channel outflow Q begins 
when the threshold value R* is exceeded.  The infiltration is evaluated by a Horton type 
equation.  The infiltration F and capillary rise C augment the soil storage M, which is 
depleted by transpiration EM.  Deep percolation D occurs when the soil moisture threshold 
M* is exceeded, augmenting groundwater storage G, which in turn is depleted by capillary 
rise C and base flow B.  If G exceeds the threshold value G*, M is absorbed into G, then C 
and D disappear and EM and F operate on G.  The channel storage S and groundwater 
storage G are assumed to be linear reservoirs with storage constants KS and KG, 
respectively.  The  channel flow Q is routed through a linear reservoir S yielding the flow 
QS, which added to the base flow B gives the total flow Q. 

 An alternative USGS model is the distributed routing rainfall-runoff model 
developed by Dawdy et al. (1972). This model uses a modified version of the Philip's 
infiltration equation and the infiltration capacity concept of Crawford and Linsley (1966) 
to determine the excess rainfall. A kinematic wave model component is used for routing. 
The model was specifically designed for routing urban flood discharges through a 
branched system of pipes or natural channels using rainfall as input.  The drainage basin 
is presented as a set of segments (overland flow, channel reservoir and nodal) which 
jointly describe all sub-basins of the entire basin. 

 A single event watershed model which has been widely used for estimation of 
surface runoff and river/reservoir flow in a basin during floods is the HEC-1 Flood 
Hydrograph Package.  It was originally developed in 1967 by the staff of the Hydrologic 
Engineering Center at Sacramento, California (now at Davis, California).  The current 
version of the HEC-1 package includes computational capabilities of dam breaks, project 
optimization and kinematic wave programs (HEC, 1981). 

 The hydrologic simulation capabilities of HEC-1 include several techniques to 
input and distribute the precipitation, treat the precipitation as rainfall or snowfall, 
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compute rainfall and snowmelt losses and excess, and determine sub-basin outflow 
hydrographs by various hydrologic routing techniques.  The model may be used to 
simulate a simple single-basin watershed or a very complex basin with practically 
unlimited number of sub-basins and river reaches. The HEC-1 model can account for 
temporal and spatial variability of the precipitation runoff process in a semi-distributed 
sense. That is, within a sub-basin, HEC-1 uses spatially and temporally lumped 
parameters to simulate the precipitation-runoff process.  The precipitation hyetograph 
(rain and/or snow) is input over the sub basin, and the losses are computed, leaving an 
excess precipitation hyetograph which in turn is transformed into surface runoff 
hydrograph through a specified unit hydrograph.  The subsurface runoff hydrograph is 
computed separately and added to the surface runoff hydrograph to yield the total 
subbasin runoff hydrograph. In addition to being capable of hydrologic simulation, the 
HEC-1 package also has a provision for evaluating reservoir and channel development 
plans for flood control purposes by performing the economic analyses of flood damages 
for existing and post-development conditions. An additional application of the calibrated 
model is for impact assessment studies of basin modifications and channel improvements.  
This can be accomplished by modifying the physical parameters of the sub-basin or 
routing reach in which the change is expected or proposed and by re-analyzing the 
response of the watershed. 

Continuous Simulation Models 

 Three continuous watershed models developed in the United States of America 
are summarized in this section. The review is based on that of Ramírez et al. (1994).  The 
models are: the Stanford Watershed Model (SWM), the National Weather Service Model 
(NWS) and the Precipitation Runoff Modeling System (PRMS) of the US Geological 
Survey.  However, many alternative models exist such as the SSARR (U.S. Army Corps 
of Engineers, 1972) for daily streamflow simulations and forecasting for large 
watersheds, the SHE model developed in Europe (Abbott, 1986a, 1986b), or the LBRM 
developed by the U.S. Great Lakes Environmental Research Laboratory (Croley, 1985) 
for simulation of daily runoff in the Great Lakes basins. 

 The Stanford Watershed Model (SWM) was originally developed by Crawford 
and Linsley (1966) for the continuous simulation of the hydrologic processes in a 
watershed at hourly time scales.  Since then, the original model has undergone a number 
of revisions and expansions to satisfy specific needs and requirements (e.g., Claborn and 
Moore, 1970; Liou, 1970; Anderson, 1971; Ricca, 1972).  Several models such as the 
Agricultural Runoff Management Model, ARM, (Donigian and Crawford, 1979) and the 
Hydrologic Simulation Program, HSPF, of EPA (Johanson et al., 1980) employ the basic 
structure of the original SWM for runoff simulation but in addition simulate water quality 
and sediment erosion. 

 The SWM model partitions the watershed into land segments whose boundaries 
are established according to hydrologic characteristics and user's needs. The segmentation 
of land is usually based on meteorologic, soil, topographic, and drainage considerations.  
Thus, each land segment is assumed to be homogeneous with respect to hydrologic 
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characteristics, and is assumed to produce a homogeneous hydrologic response.  
Streamflow may be computed at several locations in the stream network. 

 Two storage zones control overland flow, infiltration, interflow and inflow to the 
groundwater storage.  The upper zone storage may be physically interpreted as consisting 
primarily of depression storage whereas the lower zone represents the soil moisture 
storage above the capillary zone. The role of the upper zone is to simulate the initial 
response to rainfall, and therefore it is of importance for small storms, and for the first 
few hours of major storms.  The lower zone plays a major role during large storms in 
controlling temporal variation of infiltration rates.  Infiltrated water moves to the lower 
zone and groundwater storage.  Additional infiltration may occur from depression storage 
or from runoff, giving rise to delayed infiltration.  A fraction of total infiltrated water 
reaches the groundwater storage, which then contributes to baseflow.  Moisture may be 
lost from the system as evapotranspiration from interception, upper zone, lower zone, and 
groundwater storage, and stream surfaces. Direct inflows from the impervious areas, 
overland flow, interflow, and groundwater flow are combined to become total inflow into 
the channel network which contributes to the streamflow hydrograph. 

 The U.S. National Weather Service (NWS) developed a computerized system of 
operational river forecast procedures including data acquisition and processing, 
computation of mean basin precipitation, snow accumulation and ablation, explicit soil 
moisture accounting, channel routing, parameter optimization and verification, and 
operational forecasting.  This set of models, known as the National Weather Service 
River Forecast System, (NWSRFS), has been extensively described (e.g., Monro and 
Anderson, 1974; Peck, 1976).  The soil moisture accounting model of the NWSRFS has 
been developed by the NWS Sacramento, California River Forecast Center (e.g., Burnash 
et al., 1973).  The NWS model can be partitioned into two major components, namely: 
the Sacramento soil moisture accounting model, and the flow routing model.  The 
Sacramento soil moisture accounting model is a continuous, conceptual, lumped input 
and lumped parameter model which transforms the rainfall input in the land phase of the 
hydrologic cycle into channel inflows.  The flow routing model is responsible for routing 
the channel inflows to the basin or subbasin outlet using unit hydrograph and Muskingum 
routing methods. 

 The Sacramento soil moisture accounting (SMA) model assumes that a catchment 
consists of two reservoirs, the upper zone and the lower zone.  This conceptualization is 
intended to provide a simple but effective representation of the hydrologic process of the 
catchment starting with precipitation, the subsequent vertical and horizontal movement of 
water through and over the soil, and finally the production of runoff.  The upper zone 
represents the upper soil layer and interception storage, whereas the lower zone represents 
the bulk of the soil moisture and groundwater storage.  Each zone stores water in two 
forms, tension water and free water.  Tension water is only depleted by 
evapotranspiration.  Depletion of free water occurs vertically as percolation and 
horizontally as evapotranspiration and interflow. In the lower zone, there are two types of 
free water storage: primary storage, which is slow draining, and provides baseflow over 
long periods of time; and supplementary storage, which is fast draining, and supplements 
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baseflow after a period of relatively recent rainfall.  Movement of water from upper zone 
to lower zone is achieved through percolation, which is a nonlinear function of upper 
zone free available water and lower zone moisture deficiency. 

 Two levels of watershed partitioning are required in the model. The first level 
partitions the watershed into soil moisture accounting areas where each area is a 
homogeneous unit in terms of the SMA model parameters.  Rainfall and 
evapotranspiration input data are assumed uniform over each SMA area.  The second 
level of partitioning divides an SMA area into smaller homogeneous units representing 
individual flow planes (overland and channel). Each flow plane is assumed to have 
homogeneous unit graph-Muskingum model parameters.  Although there are two levels 
of watershed partitioning, one can assume a flow plane to coincide with the SMA area.  
Streamflow is computed at the outlet or flow points of each flow plane. 

 The model is set up to simulate basin hydrology on hourly or longer time 
intervals.  Rainfall input data can only be given on an hourly basis whereas 
evapotranspiration and streamflow input data can be given on a longer time interval as an 
integer multiple of the time interval of rainfall.  In such cases, the model uniformly 
distributes the evapotranspiration data and computes streamflow over the time basis of 
rainfall data and over the time interval specified for streamflows. 

 Finally, the model generates five components of flow: 1) direct runoff from 
permanent and temporary impervious areas, 2) surface runoff which occurs when the 
upper zone free water storage is full and precipitation intensity exceeds the rate of 
percolation and interflow, 3) interflow resulting from lateral drainage of the upper zone 
free water storage, 4) supplemental baseflow, and 5) primary baseflow.  The first three 
runoff components represent the total channel inflow whereas the latter two are the total 
baseflow.  In the NWS model, the total channel inflow constitutes the surface runoff 
contribution to the streamflow hydrograph routed via unit hydrograph/Muskingum 
routing methods, and a portion of the total baseflow is the subsurface runoff contribution 
to streamflow.  This subsurface flow contribution is added to the routed streamflow at the 
basin or subbasin outlet using a linear decay weighting function which is similar to the 
hydrograph routing method. 

 The U.S. Geological Survey (USGS) developed a Precipitation-Runoff Modeling 
System (PRMS) to simulate surface water runoff, sediment yields and general basin 
hydrology under various combinations of precipitation, climate and land use (Leavesley et 
al., 1983).  The system is physically based such that each component of the hydrologic 
cycle is expressed as functional relationships of known physical laws or empirical 
knowledge of the hydrologic process.  The PRMS model can be either a lumped or 
distributed parameter model, capable of simulating mean daily flows and storm flow 
hydrographs. 

 The watershed is partitioned into hydrologic response units (HRU's) which may or 
may not be associated with individual sub watersheds.  HRU's are defined based on 
characteristics such as slope, orientation of hillslope or aspect, soil type, vegetation type, 
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elevation and precipitation distribution (Leavesley et al., 1983), which imply similar 
hydrologic response behavior.  Water and energy balances are determined daily for each 
HRU.  The inputs are daily precipitation, maximum and minimum daily air temperature, 
daily solar radiation and daily streamflow (for calibration).  Precipitation is reduced by 
interception.  The energy inputs of air temperature and solar radiation drive the processes 
of evaporation, transpiration, sublimation and snowmelt. 

 The model is represented by a series of storage (reservoirs).  Each HRU has a soil-
zone reservoir.  This represents the soil mantle that can lose water by evaporation and 
transpiration. Average root depth of the predominant vegetation on the HRU defines the 
depth of the soil-zone reservoir.  Water storage in this zone is increased by infiltration 
and is decreased by evapotranspiration.  The soil zone is represented by two layers. The 
upper layer (recharge layer) loses water by evaporation and transpiration, whereas the 
lower layer loses water only by transpiration. 

 When the soil zone reservoir reaches field capacity, excess water percolates to the 
subsurface and groundwater reservoirs.  The subsurface reservoir responds faster than the 
groundwater reservoir.  The subsurface reservoir can be linear or nonlinear, whereas the 
groundwater reservoir responds linearly. Subsurface and groundwater reservoirs can be 
defined for each HRU or can be defined for larger areas comprising several HRU's.  The 
snow component of PRMS simulates the accumulation and depletion of a snowpack on 
each HRU. 

 The USGS model can simulate basin hydrology on a daily and on a shorter time 
interval for flood simulation.  The daily mode simulates hydrologic components on daily 
averages or total values. Shorter time simulation, with time steps in the order of minutes, 
computes water discharge and sediment yield from selected rainfall events.  Normally the 
model operates on a daily mode until it reaches dates of storm events.  In these cases, the 
model shifts to the shorter time interval mode until the storm period terminates.  The 
model then returns to the daily mode. Leavesley and Stannard (1990) used ARC/INFO 
with PRMS to simulate hydrographs in the East Fork Carson River, and Luellwitz (1991) 
used ARC/INFO with PRMS to simulate hydrographs in a sub alpine watershed in 
Colorado. This model has been incorporated into the Modular Modeling System of the 
U.S.G.S., which is briefly described in the next section. 

Current Developments 

 Flood hydrology has developed very rapidly after the works of Sherman and 
Horton in the 1930's and 40's. This has been the result of improvements in our 
understanding of the fundamental laws governing hydrologic process behavior and of 
improvements in computational power and observational capabilities. Parallel to the 
development of increasingly more powerful computer hardware has been the 
development of computer programming languages, data-base systems, and graphics and 
image processing tools which have made easier the use of large amounts of input data and 
have enhanced the analysis and interpretation of the output. 
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 The development of digital terrain models (DTM) and data base systems for 
spatial data, so-called Geographic Information Systems (GIS), has had a tremendous 
impact on our ability to describe and understand the effects of highly heterogeneous 
boundary conditions on hydrologic response. GIS makes it possible to integrate efficiently 
not only the topography, but the geomorphology, soil type, vegetation and land use 
characteristics of the basin, with physically-based hydrologic models of watersheds.  
These geomorphoclimatic and hydraulic characteristics, whose extreme variability in 
space and time has profound nonlinear effects on hydrologic response, have become 
increasingly available (e.g., NEXRAD radar precipitation fields) with the advent and 
rapid development of remote sensing.  GRASS of the U.S. Corps of Engineers and 
ARC/INFO of Environmental Systems Research Institute of California, USA, are two 
examples of GIS packages widely used in conjunction with DTM's, remotely sensed data 
(i.e., precipitation), and hydrologic modeling. 

 The Modular Modeling System (MMS) (Leavesley et al, 1996) is an integrated 
system of computer software that has been developed with financial support from the 
U.S.G.S. to provide the research and operational framework needed to support 
development, testing, and evaluation of physical-process algorithms and to facilitate 
integration of user-selected sets of algorithms into operational physical-process models. 
As such, the MMS integrates all of the above referred to improvements in computer 
software and hardware within a modeling framework aimed at facilitating and improving 
hydrologic modeling. MMS uses a module library that contains modules for simulating a 
variety of water, energy, and biogeochemical processes (e.g., it includes the PRMS 
model). A model is created by selectively coupling the most appropriate modules from 
the library to create a suitable model for the desired application. Where existing modules 
do not provide appropriate process algorithms, new modules can be developed. The MMS 
modeling system also provides installation capabilities for new module development, and 
model development and application using the MMS graphical user interface. The MMS 
enhances the ability of the modeler to address the specific conditions under consideration, 
as it allows building of different model configurations, either from a bank of hydrologic 
simulation modules, or by an explicit coding of new modules. As an example, Epstein 
and Ramírez (1993, 1994) used the GRASS GIS package with PRMS in an earlier 
version of the MMS to simulate streamflow hydrographs in the Rio Grande basin.  Their 
work addresses issues of climatic variability and its impact on hydrologic response. 

 During the last decade, recognition of the significant impact of spatial variability 
on hydrologic response has prompted renewed interest in the development of spatially 
distributed hydrologic models for flood routing and for flood risk analyses. In addition to 
describing the complex interactions of local hillslope processes, variable soil and 
vegetation characteristics, and channel network, spatially distributed modeling has the 
advantage of providing predictions at any location throughout the river network, not only 
at the outlet. This is an important advantage in planning and design problems where 
predictions are required at a specific river cross section, at which perhaps no historical 
observations are available. 
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 Mancini and Rosso (1989) used a GIS to investigate the spatial variability of SCS 
Curve Number within the basin, thus assessing the effects of such variability on basin 
scale estimates.  Brath et al. (1989a and 1989b) analyzed scale effects in distributed 
rainfall-runoff modeling, Pilotti and Rosso (1990) presented SHELL (i.e., a general 
framework for modeling the distributed response of drainage basins to storm rainfall), and 
Ranzi and Rosso (1991b) reported a physically based approach to modeling distributed 
snowmelt in alpine catchments. 

 Burlando et al. (1994) developed a methodology for the evaluation of flood risk in 
a distributed modeling framework. Their flood risk analyzer (FLORA) combines a 
geomorphologic model of flood frequency with a distributed description of the basin 
given in terms of soil types, land use, and topography. Runoff potential and infiltration 
characteristics are described as a function of the SCS Curve Number model. The 
geomorphologic model of flood frequency is based on the ideas of Eagleson (1972) 
introduced earlier in this chapter.  In their application, Burlando et al. use the approach of 
Bacchi and Rosso (1988) to derive the second order properties of the frequency 
distribution of flood peaks for any point of the basin as a function of the stochastic 
properties of precipitation, and of the soil type, land use, and geomorphologic 
characteristics of the section in question. Assuming an Independent Poisson Marks model 
for precipitation (Eagleson, 1972), and the Soil Conservation Service Curve Number 
model for infiltration losses, they show that the frequency distribution of the annual 
maxima is an Extreme Value Type II distribution, and obtain expressions for its second 
order moments as a function of climate and geomorphology. They applied this 
methodology successfully to the Sansobbia river basin in Northern Italy. 

 Physically based distributed modeling of watershed processes has become 
increasingly feasible in recent years. In addition to the development of improved 
computational capabilities, DTM's and GIS tools, this has been brought about by 
advances in our understanding of the fundamental physical processes underlying the 
hydrologic cycle and of the solution of the mathematical equations representing those 
processes.  Generally, the various hydrologic processes governing the transformation of 
rainfall into runoff are extremely complex, non-linear, and spatially and temporally 
variable, giving rise to complex sets of strongly coupled non-linear differential equations. 
Analytical solutions for these equations have been found for the simplest cases only, and 
one dimensional and two dimensional numerical solution schemes have been developed 
and applied.  For example, Saghafian (1992), Ogden (1992), Ogden and Julien (1993), 
Ogden et al. (1995), and Saghafian et al. (1995) developed two dimensional numerical 
schemes for routing the excess rainfall through the overland phase of a watershed.  The 
CASC2D model (e.g., Saghafian et al., 1995), is a distributed-parameter, two-
dimensional, unsteady diffusion wave model that routes overland flow using a diffusion 
wave approximation for the flow dynamics. The equations of motion are solved using a 
finite difference scheme. The model includes continuous soil-moisture accounting, 
rainfall interception, infiltration, surface and channel runoff routing, soil erosion and 
sediment transport. Over each pixel of the domain, flow is allowed to take place only one-
dimensionally and in the direction of the steepest slope of either of 2 orthogonal 
directions in an orthogonal cascade of planes. Input to each pixel is in the form of 
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precipitation and upstream inflow from all directions.  Infiltration losses are diagnosed at 
each pixel using the Green-Ampt infiltration equations. CASC2D is one of the surface-
water hydrologic models support by the Watershed Modeling System (WMS) under 
development at Brigham Young University. More recently, Fiedler and Ramírez (1998) 
developed a fully unsteady, fully dynamic, 2-dimensional hydrodynamic wave model for 
the simulation of the rainfall-runoff process that allows for fully interactive infiltration. In 
addition to the explicit consideration of fully interactive infiltration, Fiedler and Ramírez 
developed a numerical scheme capable of describing the flow dynamics as affected by 
microtopographic conditions and other rapidly varying soil and vegetation characteristics. 
As such, this capability allows for consideration of issues of scale and takes into account 
the impact of microchannel formation (e.g., rills, etc.) on runoff production and flood 
dynamics. 
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